Quadratic semiparametric Von Mises calculus.

نویسندگان

  • James Robins
  • Lingling Li
  • Eric Tchetgen
  • Aad W van der Vaart
چکیده

We discuss a new method of estimation of parameters in semiparametric and nonparametric models. The method is based on U-statistics constructed from quadratic influence functions. The latter extend ordinary linear influence functions of the parameter of interest as defined in semiparametric theory, and represent second order derivatives of this parameter. For parameters for which the matching cannot be perfect the method leads to a bias-variance trade-off, and results in estimators that converge at a slower than n(-1/2)-rate. In a number of examples the resulting rate can be shown to be optimal. We are particularly interested in estimating parameters in models with a nuisance parameter of high dimension or low regularity, where the parameter of interest cannot be estimated at n(-1/2)-rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations

We propose and analyse estimators for statistical functionals of one or more distributions under nonparametric assumptions. Our estimators are derived from the von Mises expansion and are based on the theory of influence functions, which appear in the semiparametric statistics literature. We show that estimators based either on data-splitting or a leave-one-out technique enjoy fast rates of con...

متن کامل

A semiparametric Bernstein - von Mises theorem for Gaussian process priors

This paper is a contribution to the Bayesian theory of semiparametric estimation. We are interested in the so-called Bernstein-von Mises theorem, in a semiparametric framework where the unknown quantity is (θ , f ), with θ the parameter of interest and f an infinite-dimensional nuisance parameter. Two theorems are established, one in the case with no loss of information and one in the informati...

متن کامل

Bernstein-von Mises Theorems for Functionals of Covariance

We provide a general theoretical framework to derive Bernstein-von Mises theorems for matrix functionals. The conditions on functionals and priors are explicit and easy to check. Results are obtained for various functionals including entries of covariance matrix, entries of precision matrix, quadratic forms, log-determinant, eigenvalues in the Bayesian Gaussian covariance/precision matrix estim...

متن کامل

Semiparametric Bernstein–von Mises for the error standard deviation

Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of ...

متن کامل

Semiparametric Bayesian Techniques for Problems in Circular Data

 In this paper, we consider the problems of prediction and tests of hypotheses for directional data in a semiparametric Bayesian set-up. Observations are assumed to be independently drawn from the von Mises distribution and uncertainty in the location parameter is modelled by a Dirichlet process. For the prediction problem, we present a method to obtain the predictive density of a futur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Metrika

دوره 69 2-3  شماره 

صفحات  -

تاریخ انتشار 2009